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Critical viscosity exponent for fluids: Effect of the higher loops
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We arrange the loopwise perturbation theory for the critical viscosity exponentxh , which happens to be
very small, as a power series inxh itself, and argue that the effect of loops beyond two is negligible. We claim
that the critical viscosity exponent should be very closely approximated byxh5(8/15p2)(118/3p2)
.0.0685.
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Critical exponents, amplitude ratios, and scaling functio
were issues of considerable importance three decades
Sophisticated calculations and experiments were carried
which clearly established the correctness of the various
oretical models~Landau-Ginzburg equations for statics, a
the various models of dynamics@1–4# introduced by Hohen-
berg and co-workers!. Basically, the exponents could be cla
sified into two types:~i! large exponents, i.e., exponents
O(1) and~ii ! small exponents, i.e., exponents ofO(0.1) or
even smaller. It is the small exponents where the most cru
confrontation between theory and experiment can occur. T
is why even after three decades, the small exponents rem
an interesting issue. In static critical phenomena@5# the small
exponents are associated with the critical correlation func
at the transition point (h, the anomalous dimension expo
nent! and specific heat (a, the specific-heat exponent, th
specific heat at constant volume for the liquid-gas transit
and the specific heat at constant pressure for the super
transition of He4), while in the critical dynamics the sma
exponent is associated with the shear viscosity. Accurate
termination@6# of a for the superfluid transition and com
parison with very detailed calculations@7# confirm the theo-
retical expectation. For the shear viscosity exponentzh , the
recent measurements@8# in the space shuttle have yielded a
accurate value, namely,zh50.069060.0006. The theoretica
self-consistent two-loop calculation inD53 of Hao yields
zh50.06660.002, amazingly close to the experimen
value. This raises the immediate question: What happene
the higher loops? The one-loop answer is 20% away from
experimental answer, the two-loop calculation produces
20% enhancement almost entirely, and so what happen
the infinite number of loops that have been left out? This
the question that we address in the paper, and provide ins
into why the higher loops happen to be unimportant.

In a liquid-gas system near the critical point or a bina
liquid mixture near the critical mixing point, the order p
rameterf is the density~concentration! difference and re-
laxes when disturbed from equilibrium according to t
Langevin equation

]f~kW !

]t
52Gk2~k21k2!f~kW !1N~kW !, ~1!

where f(kW ) is the Fourier transformation of th
D-dimensional fieldf(x1 , . . . ,xD). In the relaxation rate
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the factork2 indicates thatf(xW ) is conserved.G is the On-
sager coefficient@9–12# and the diffusion constant isD
5G/x, wherex is the susceptibility. Near the critical poin
the susceptibility isx5(k21k2)21 with k5j21, the in-
verse correlation length that diverges nearT5Tc as j}uT
2Tcu2n. The termN is a stochastic forcing that comes fro
the short wavelength modes. Fluctuation dissipation ho
and the correlation ofN is related in the usual way to th
dissipation.

In a fluid, the density~concentrations! fluctuations will be
affected by the velocity fluctuations and the effect of t
velocity is to advect the concentration field, so that

]f~kW !

]t
1 ika(

pW
va~pW !f~kW2pW !

52Gk2~k21k2!f~kW !1N~kW !. ~2!

The fact that the velocity fluctuations affect the concentrat
means that we need to know the velocity fluctuations. T
equation of motion~for small fluctuation! is Navier-Stokes
equation

]va~kW !

]t
52hk2va~kW !1Na

v ~kW !. ~3!

Note thatva and Na are solenoidal. However Eqs.~2! and
~3! do not conserve the local free energy density(kW@(k2

1k2)f(kW )f(2kW )1v(kW )v(2kW )# when the dissipation term
are omitted, and consequently Eq.~3! needs to be argu
mented as

]va~kW !

]t
1 i(

pW
p2pbTab~kW !f~pW !f~kW2pW !

52hk2va~kW !1Na
v ~kW !, ~4!

whereTab(k)5dab2kakb /k2, the projection operator. The
effect of the nonlinear terms in Eqs.~4! and ~5! is to renor-
malize the Onsager coefficientG and the shear viscosityh.
Dropping the nonlinear terms, we get the zeroth-order so
tion

f (0)~kW ,t !5E e2Gk2(k21k2)(t2t8)N~ t8!dt8 ~5!
©2003 The American Physical Society03-1
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and

va
(0)~kW ,t !5E e2hk2(t2t8)Na~ t8!dt8. ~6!

The first-order solution is easily seen to be

f (1)~kW ,t !52E e2Gk2(k21k2)(t2t8)ika(
pW

va
(0)

3~pW ,t8!f (0)~kW2pW ,t8!dt8 ~7!

and

va
(1)~kW ,t !52 i E e2hk2(t2t8)p2pbf (0)

3~pW ,t8!f (0)~kW2pW ,t8!dt8. ~8!

The fields being stochastic in nature, the effect of the n
linear terms in Eqs.~2! and ~4! are to be understood as a
eraged over the noise terms, and it is easy to see tha
nonlinear terms in Eq.~2! yield a term of the form2k2(k2

1k2)*G (R)(kW ,t2t8)f (0)(2kW ,t8)dt8 and those in Eq.~4!

give 2k2*h (R)(kW ,t2t8)va
(0)(2kW ,t8)dt8, when we split the

quadratically nonlinear term as one field at zeroth order
the other at first order. For Eq.~2!, this implies writing the
nonlinear term as ika@^(pWva

(0)(pW )f (1)(kW2pW )&
1^(pWva

(1)(pW )f (0)(kW2pW )&# and similarly for Eq.~4!. This is
exactly equivalent to a one-loop result. The two-loop resu
come from all the pairings of three, the three-loop resu
from the pairings of five and so on. The Fourier transfor
GR(kW ,v) and hR(kW ,v) of GR(kW ,t2t8) and hR(kW ,t2t8) are
the renormalized Onsager coefficient and the shear visco
respectively.

The renormalized transport coefficientsG (R)(k,v) and
h (R)(k,v) diverge at the critical point in the zero-frequen
zero-wavelength limit and dominate the molecular contrib
tions. From now on we will refer to these asG(k,v) and
h(k,v). A little algebra shows that at one loop, we get t
standard results@h(k)k2@G(k)k2(k21k2)#

G~k,k!5
1

C3
E d3p

~p21k2!

sin2u

h~kW2pW !~kW2pW !2
~9!

and

h~k,k!5
1

4C3
E d3p

~p21k2!~p821k2!

3
p2~p22p82!2sin2u

@p2~p21k2!G~pW !1p82~p821k2!G~pW 8!#
, ~10!

wherep8W5kW2pW .
We now introduce the scaling behavior~long-wavelength

divergence at the critical point! at k50 as

G~k!5G0k211xh, ~11!
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h~k!5h0k2xhk2, ~12!

consistent with Eqs.~9! and ~10!, wherexh is the exponent
that is yet unknown. Working atk50 in Eq. ~9!, we find

h0G05
p2

8
1O~xh!. ~13!

We anticipate at this stage thatxh is very small and are going
to use it as a small parameter in setting up our calculat
Our main observation is that a loopwise expansion can
cast as an expansion in powers ofxh for the quantityh0G0.
We can get yet another expansion forh0G0 by using Eq.~10!
at k50. The integral has a long-wavelength divergence
xh50 and this leads to the evaluation of the integral a
pole in xh . This yields

h0G05
1

15xh
1O~1!. ~14!

Combining Eqs.~13! and ~14!,

xh5
8

15p2
~15!

to the lowest order.
We now observe that the perturbation theory forG andh

can be expressed through diagrams as shown in Figs. 1
2, with a wavy line denoting the velocity field~propagator or
correlator as the case may be! and a solid line denoting the
density field.

For higher loops, self-energy insertion@13–15# are not
shown separately. They are handled by a finite freque
evaluation of a lower loop and yield insignificant correction
The important graphs are the vertex correction varieties@16#
that are shown in Figs. 1 and 2. If we compare a one-lo
and a two-loop graph, we note that compared to the one-l
graph, the two-loop graph has two additional time zones:
dominated by viscosity relaxation, the other lacking any v
cosity contribution. This means an additional factor
(h0G0)21 everytime a loop increases. Now, in addition, w
note that for every loop the viscosity graphs diverge logar
mically if xh50 and have a pole for smallxh . We simply

FIG. 1. Diagrammatic loop expansion for one- and two-lo
diagrams for the density relaxation rate. The solid lines stand
density fluctuation and the wavy lines for velocity fluctuation.

FIG. 2. Diagrammatic loop expansion for one- and two-lo
diagrams for the viscosity. The solid lines stand for density fluct
tion and the wavy lines for velocity fluctuation.
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need to evaluate this pole in a manner very similar to
dimensional regularization scheme in field theory. From F
1, there emerges

h0G05J11
1

h0G0
J21

1

~h0G0!2
J31•••, ~16!

while from Fig. 2, we get
s
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. h0G05

I 1

xh
1

I 2

h0G0xh
1

I 3

~h0G0!2xh

1•••, ~17!

whereI n andJn are integrals corresponding to diagrams w
n loops. Figures 1~a! and 2~b! show the one-loop integral
corresponding to Eqs.~9! and~10!. The integrals correspond
ing to the two-loop diagrams@Figs. 1~b! and 2~b!# are
k2I 25
1

2E d3p

C3
E d3q

C3

paTab~k!qbpmTmn~k2p2q!qn@p22~kW2pW !2#@q22~kW2qW !2#

p2q2~kW2pW 2qW !2@p31~kW2pW !3#@q31~kW2qW !3#
, ~18!

J25E d3p

C3
E d3q

C3

@~kW2pW 2qW !22~kW2pW !2#@~kW2pW 2qW !22~kW2qW !2#

~kW2pW !2~kW2qW !2~kW2pW 2qW !2

kaTab~p!~kW2qW !bkmTmn~q!~kW2pW !n

p2q2@~kW2pW !31~kW2qW !31~kW2pW 2qW !3#
. ~19!
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Using Eq.~14! to substitute forh0G0 in Eqs.~16! and ~17!,
we end up with

h0G05J1115xhJ21~15xh!2J31•••. ~20!

The important fact is that 15xhJ2!1 and this trend continue
through higher loops. This fixesh0G0.

Turning now to the diagrams of Fig. 2, they lead to@using
Eq. ~14! repeatedly#

h0G05
I 1

xh
115I 21xh~15!2I 31•••

5
I 1

xh
F1115xh

I 2

I 1
1xh~15!2xh

I 3

I 1
1•••G

5
1

15xh
F11

8

p2
1xh

8

p2

15I 3

I 1
1xh

2 8

p2

152I 4

I 1
1•••G ,

~21!

leading to the ordering inxh . The calculation ofI 2 /I 1 yields
1
3 and hence to two-loop order,

xh5
8

15p2 S 11
8

3p2D .0.0685. ~22!

The reason whyI 2 is smaller thanI 1 has to do with the
projection factors that yield zeros in the integrand. The la
number of zeros and their distributions in the three loop
tegral lead toI 3 /I 1 being significantly smaller than110 . The
additional factor ofxh now makes the three-loop contribu
tion negligible. The important point is that for an-loop inte-
gral I n , the projection factor produces sufficient cancel
tion, so that 15n22I n is alwaysO(1), andthis ensures tha
higher loops produce insignificant corrections whenxh!1.
This is the crucial point of the paper. The thing that o
e
-

-

needs to appreciate is thatI 2,I 1, but I 3!I 1. What we will
try to elucidate is the reason behind this change. Unfo
nately this reason is not a universal feature. It is specific
this problem. The combination of projection operators as
ciated with the transverse velocity field makes the three-lo
integrals small, and this combination is maintained in t
subsequent loops. It should be pointed out that this does
imply that this will make an asymptotic series convergent.
in all loop expansions in critical phenomena, this expans
in xh too is an asymptotic expansion. What the smallness
the loop integrals does is that it postpones the onset of
divergent behavior to a higher order. This implies that t
effect of the higher loops will be muted and the agreem
between a two-loop result and experiment will be better th
expected.

The generic form of the three-loop graph of Fig. 2~c!
involves a few different time orderings, all of which ar
shown in Fig. 3. A typical contributionI 3

(1) coming from the
last two graphs of Fig. 3 is

k2I 3
(1)52E d3p

C3

d3q

C3

d3r

C3

@~kW2pW !22p2#@~kW2rW !22r 2#

~kW2pW !2~kW2qW !2

3
paTab~k!r bpmTmn~p2q!pn

~kW2rW !2@p31upW 2kW u3#@q31ukW2qW u3#

3
qgTgl~q2r !ql

@r 31ukW2rWu3#~kW2pW 2qW !2~kW2qW 2rW !2
. ~23!

The evaluation ofI 3 has to be in the limit ofk→0. This
allows us to dropk from all the terms after a factor ofk2 has
been extracted from the integral. We now carry out the f
lowing steps in aD-dimensional space for generality

~a! Expand the number in powers ofk2 and keep the first
term ~this is proportional tok2), and setk50 everywhere
else.
3-3
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~b! Perform an angular average over the directions ofkW .
In a D-dimensional space,I 3

(1) after some long algebra
reduces to

FIG. 3. Three-loop diagrams of the vertex correction variety
the viscosity, showing all possible time orderings. Propagators
pear with an arrow and correlators with an open circle.
. B

Re

03610
I 3
(1)52

1

4D~D12!
E dDpdDqdDr

3
@D~pW •rW !22p2r 2#

r 4~qW 2rW !4~pW 2qW !4

3
@p2q22~pW •qW !2#@q2r 22~qW •rW !2#

pDqDr D
. ~24!

It is the factor (pW •rW)22p2r 2/D that is qualitatively new, to
the best of our knowledge. The two-loop integralI 2 did not
have such a factor. The characteristic feature of this facto
that in the absence of the quite indirect additional appeara

of the angle betweenpW andrW because of the termuqW 2rWu4 and

upW 2qW u4 in the denominator, the averaging over the directio

of rW ~or pW ) would makeI 3
(1) identically zero. In practice, this

effect makes it unusually small compared toI 2 or I 1, which
do not have such a factor. If we look at the higher loops, e
additional loop brings in a factor of this type, and that is t
reason behind the successive diminishing of each of th
integrals.

A numerical evaluation inD53 yields I 3
(1).2( 1

15 )2,
which makes the point that we wanted to make. The corr
tions from the three-loop graphs are down by an order ofxh

and this effect persists to higher orders. This is the rea
why the two-loop calculation of the viscosity exponent giv
an answer surprisingly close to the experimental value.

In closing we would like to mention that we have used
Gaussian free energy in this calculation. There is a qua
part in the free energy which is responsible for the anom
lous dimensionh. The correction coming from this is onc
again largest at the loop level when it first appears. There
no genuine three-loop graphs involving only the quartic te
in the expansion shown in Eq.~17!. In the expansion of Eq
~16!, J3 involves a combination of two four-point and tw
three-point vertices. It should be noted thatJ2 already plays
a negligible role. Consequently, it is not necessary to takeJ3
into account. The net result is that from one to two loo
there is a substantial change inxh , but thereafter the contri-
bution of the higher loops are ordered byxh itself, and with
the integrals themselves quite small, the small value ofxh
ensures that the higher-loop effects are small.
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